

#### CENTER FOR RESPONSE TO INTERVENTION IN EARLY CHILDHOOD



#### Seminar in RTI Research

Charles R. Greenwood and Judith J. Carta

Juniper Gardens Children's Project, University of Kansas



Utah Conference on Effective Practices for Teachers and Human Service Professionals: Interventions Across the Lifespan Utah State University, Logan UT, June 23, 2011

# Gui

#### Guiding Issue for Today's Talk

- The RTI approach to education and human services is increasingly prevalent
- However, RTI presents unique challenges to efficacy study designs
- This presentation introduces some of these challenges encountered in the authors' research and discusses potential solutions
- Implications for RTI intervention development and efficacy research are discussed



### Briefly, What is RTI?

- An early intervening approach using evidencebased practice to prevent the need for special education services
- Using universal screening of all children (students)
- Children at risk and not expected to reach future performance benchmarks, are provided additional, more intensive interventions.
- Based on child progress, decisions to keep or change a child's intervention are made within a school year as needed
- Much more!



#### Some RTI Efficacy Research Goals and Study Designs

- New technique development
- Refine and replicate a promising intervention
- Evaluate the efficacy of a developed and feasible intervention (e.g., Tier 1 or Tier 3 intervention)
- Evaluate the efficacy of an RTI model using Multiple Tiers of Support (MTS)

Challenges and Potential Threats (Confounds) to Internal Validity Linked to RTI Study Designs

- How does the nature of the "intervention" define cluster units in the proposed study?
- How do we handle the fact that in some studies, RTI interventions will be dynamic, children may change intervention at any time during a year based on progress?
- How should we handle repeatedly measured progress monitoring data – growth trajectories?
- How do we handle multiple layers of covarying measures (e.g., mastery, fluency, fidelity)



How does the nature of the "intervention" define cluster units in the proposed study?

- Statistical analyses of experimental RTI data lead to incorrect inferences about treatment effects (Hedges, 2007) when clustering is not considered in sampling and randomization
  - Tier 3 intervention provided to students by parents at home (Randomize children)
  - Tier 2 intervention provided children by a home visitor (Randomize home visitors)
  - A full RTI model serving all children in a school (Randomize schools)



How do we handle dynamic RTI interventions where children may change intervention at any time during a year based on progress?

- By definition, RTI services are intentionally dynamic, school teams or teachers make intervention change decisions
  - This may violate the assumptions in some quasiexperimental designs, for example the Regression Discontinuity Design)
  - Presents challenges to attribution of causal effects that include variable intervention changes and different exposures (dosage)



How should we handle repeatedly measured progress monitoring data – growth trajectories?

- Time series, repeatedly measured progress data are typical in RTI research and present some challenges to assumptions and interpretation
  - Single case designs are highly appropriate when the unit of study is the individual child's progress repeatedly measured (AB being the simplest)
  - Growth curve analyses are appropriate when the unit of analysis is multiple children repeatedly measured

How do we handle multiple layers of covarying measures (e.g., mastery, fluency, fidelity)

- RTI research typically involves multiple collection of multiple measures (e.g., dependent measures, and covariates like fidelity of implementation, time in treatment, etc.)
  - Research questions typically focus on how do covariates affect change in the dependent measure
  - SCD graphing the data in the same figure to display covaration
  - GCA testing whether or not covariates significantly affect the observed trajectories



#### Case in Point



- Buzhardt, J., Greenwood, C. R., Walker, D., Anderson, R., Howard, W. J., & Carta, J. J. (in press). Effects of web-based support on Early Head Start home visitors' use of evidence-based intervention decision making and growth in children's expressive communication. NHSA Dialog: A Research-to-Practice Journal for the Early Childhood Field.
- Buzhardt, J., Greenwood, C. R., Walker, D., Carta, J. J., Terry, B., & Garrett, M. (2010). Webbased tools to support the use of data-based early intervention decision making. *Topics in Early Childhood Special Education*, 29(4), 201-214.



## Study Highlights

- Purpose To assess the efficacy of a Tier 2 naturalistic language intervention
  - Delivered in the home to children by parents
  - Parents coached and monitored by Early Head Start home visitors
- Experimental Conditions with and without web-based decision making support for home visitors
- Participants Early Head Start programs in KS, Home Visitors, and Children performing below screening benchmark's in early communication skills
- Design Longitudinal randomized trial comparing 2 conditions: (A) home visitors with materials and basic training versus (B) condition 1 plus web-based decision support



## Study Highlights

- Unit of Treatment because treatment was guided by home visitors, they were randomized to the two conditions, not children
- Measures
  - Repeatedly measured Early Communication skills allowing examination of children's growth over time
  - Fidelity of implementation for home visitors and parents

#### Use of Progress Monitoring in Intervention Decision Making





# Use of data-based, decision making model





- To ensure children at risk of a language delay are identified quickly
- To facilitate early intervention
- To assess the degree that interventions are implemented
- To encourage intervention changes when progress is not being made





- Because this was a randomized design and the dependent variable was children's language growth trajectories we, used univariate CGA
  - Individual children's growth is considered in terms of slope and intercept
  - It handles missing data
  - It supports the use of independent variables and covariates (IFSP status, Age at Eligibility)



- Because children were screened into the study at different times, each child's language data was converted to a time scale in terms of months before and after onset of the Tier 2 intervention.
- This enabled use of a twice-piece CGA with the intercept centered at the last time point prior to start of the intervention (time = 0)



#### Level 1 CGA Findings



| Level-1 Descriptive Statistics |     |         |       |         |         |  |  |  |  |
|--------------------------------|-----|---------|-------|---------|---------|--|--|--|--|
| Variable                       | N   | Mean SD |       | Minimum | Maximum |  |  |  |  |
| ECI Total Communication        | 770 | 7.66    | 6.18  | 0       | 36.2    |  |  |  |  |
| Before Eligibility             | 770 | -0.8    | 2.02  | -12     | 0       |  |  |  |  |
| After Eligibility              | 770 | 1.92    | 2.19  | 0       | 12      |  |  |  |  |
| Level-2 Descriptive Statistics |     |         |       |         |         |  |  |  |  |
| Variable                       | N   | Mean    | SD    | Minimum | Maximum |  |  |  |  |
| Experimental Groups            | 124 | 0.51    | 0.5   | 0       | 1       |  |  |  |  |
| IFSP Status                    | 124 | 0.28    | 0.45  | 0       | 1       |  |  |  |  |
| Age at Eligibility (Months)    | 124 | 16.81   | 9.16  | 4       | 38      |  |  |  |  |
| Age x IFSP Status              | 124 | 5.33    | 9.66  | 0       | 38      |  |  |  |  |
| Groups x IFSP status           | 124 | 0.14    | 0.35  | 0       | 1       |  |  |  |  |
| Groups x Age at Eligibility    | 124 | 8.15    | 10.26 | 0       | 38      |  |  |  |  |

Note. IFSP = Individual Family Service Plan (IFSP: 0 = None, 1 = IFSP),

Experimental Groups: 0 = NonMOD, 1 = MOD





#### Table 2. Two-Piece Growth Curve Models.

|                                                                                                     | Fixed                   | Unconditional Model |              |        |                | MOD Groups Model |                 |              |       |                |       |
|-----------------------------------------------------------------------------------------------------|-------------------------|---------------------|--------------|--------|----------------|------------------|-----------------|--------------|-------|----------------|-------|
|                                                                                                     | Effects                 | Coefficien<br>t     | SE           | t      | df             | р                | Coefficien<br>t | SE           | t     | df             | р     |
| Level-1                                                                                             | Intercept               | 5.21                | 0.40         | 12.892 | 123            | 0.001            | 5.97            | 0.67         | 8.918 | 122            | 0.001 |
|                                                                                                     | $Slope_{Before}$        | 0.31                | 0.10         | 3.046  | 123            | 0.003            | 0.67            | 0.22         | 3.085 | 122            | 0.003 |
|                                                                                                     | $Slope_{After}$         | 1.38                | 0.15         | 8.797  | 123            | 0.001            | 1.00            | 0.22         | 4.572 | 122            | 0.001 |
| Level-2                                                                                             | Intercept               |                     |              |        |                |                  | -1.38           | 0.82         | 1.668 | 122            | 0.097 |
|                                                                                                     | Slope <sub>Before</sub> |                     |              |        |                |                  | -0.59           | 0.24         | 2.452 | 122            | 0.016 |
|                                                                                                     | Slope <sub>After</sub>  |                     |              |        |                |                  | 0.68            | 0.30         | 2.237 | 122            | 0.027 |
| Final Estimation of Variance Components: (Based on units that had sufficient data for computation). |                         |                     |              |        |                |                  |                 |              |       |                |       |
|                                                                                                     | Random                  |                     |              |        |                |                  |                 |              |       |                |       |
|                                                                                                     | Effects                 | SD                  | Varianc<br>e | df     | X <sup>2</sup> | р                | SD              | Varianc<br>e | df    | X <sup>2</sup> | р     |
|                                                                                                     | Intercept               | 3.63                | 13.19        | 44     | 237.7<br>7     | 0.001            | 3.65            | 13.31        | 43    | 242.9<br>4     | 0.001 |
|                                                                                                     | Slope <sub>Before</sub> | 0.43                | 0.19         | 44     | 85.80<br>6     | 0.001            | 0.43            | 0.19         | 43    | 91.07          | 0.001 |
|                                                                                                     | Slope <sub>After</sub>  | 1.15                | 1.33         | 44     | 99.67<br>4     | 0.001            | 1.11            | 1.23         | 43    | 103.7<br>1     | 0.001 |
|                                                                                                     | Level-1                 | 3.92                | 15.34        |        |                |                  | 3.90            | 15.23        |       |                |       |
|                                                                                                     | Deviance                | 4589.90             |              |        |                |                  | 4581.07         |              |       |                |       |
|                                                                                                     | Parameter               | 10                  |              |        |                |                  | 13              |              |       |                |       |
|                                                                                                     | S                       |                     |              |        |                |                  |                 |              |       |                |       |

Note. Unconditional versus conditional model test, change in deviance = 7.83,  $X^2(3) = 8.83$ , p = .03.



Table 3. Best Fitting Two-Piece ECI Total Communication Growth Model.

|                                                          | Deviance                        | Number of  | Decrease In |                           |    |                |  |
|----------------------------------------------------------|---------------------------------|------------|-------------|---------------------------|----|----------------|--|
| Models                                                   | Statistic                       | Parameters | Deviance    | <i>X</i> <sup>2</sup>     | df | p              |  |
| Level 1                                                  | 4589.898403                     | 10         |             |                           |    |                |  |
| Level 2-Age at Eligibility                               | 4498.382414                     | 13         | 91.515989   | 94.66                     | 6  | 0.0001         |  |
| Level 2-Age at Eligibility +<br>IFSP                     | 4491.090308                     | 16         | 7.292106    | 7.29                      | 3  | 0.062          |  |
| Level 2-Age at Eligibility +<br>IFSP + Comparison Groups | 4481.568057                     | 19         | 9.522251    | 9.52                      | 3  | 0.023          |  |
| Note. Age and IFSP Interaction                           |                                 |            |             |                           |    |                |  |
|                                                          |                                 |            | Effects o   | Effects of Treatment with |    |                |  |
|                                                          | Covariates Includ<br>the Growth |            |             |                           |    | rlier in<br>el |  |



#### Summary/Conclusion

- RTI represents a new generation of research seeking reach a greater level of effectiveness
- It also creates challenges to experimental study designs as discussed
- Solutions to some of these issues (not all!) were illustrated